

190 m (663 ft) Flag Pole

Baku, Azerbaijan

Introduction

Florin Arsene

He is a Principal with Distributed Engineering Group of Companies, based in London, UK. Florin holds Professional Engineering licenses in the USA, Canada and Australia. Florin was the Engineering of record of the tallest flagpole in the USA, 125 m in Sheboygan, WI, USA. He was the Engineer of record for the top three tallest flagpoles in the world, 171 m in Jeddah, Saudi Arabia, 202.5 m in New Cairo, Egypt and 190 m in Baku, Azerbaijan.

Gilles Oudin is the President and founder of Multitech.

Multitech is operating on a worldwide basis to design and manufacture different types of antivibration dampers to solve any issue regarding vibration of structures especially slender structures.

Nina Ifaninnah –Oudin is in charge of the Asian Market and is also a very efficient assistant in the vibration testing laboratories of Multitech (South of France and Jakarta)

Tallest Flag Poles

#	Height	Location	Flag Size	Year	Engineer
1	190 m 623 ft	Baku, Azerbaijan	35 m × 70 m 115 ft x 229 ft	2022 Under construction	Distributed Engineering
2	202.5 m 664 ft	New Cairo, Egypt	40 m × 60 m 131 ft x 197 ft	2021	Distributed Engineerg
3	171 m 561 fr	Jeddah, Saudi Arabia	30 m × 60 m 98 ft x 197 ft	2014	Distributed Engineering
4	165 m 541 ft	Dusanbe, Tajikistan	30 m × 60 m 98 ft x 197 ft	2011	Trident

Very often installed in front or the Residence of the President of the country.

It is some kind of internationnal competition !!! I have the biggest one !!!

Design System

7/3/2024

Location:

Design Standard:

Basic Wind Pressure:

Wind Pressure at Top:

Seismic Loads

Flag Size

Design Method:

Dampers

Baku, Azerbaijan Az DTN 2.1-1 1000 Pa at 10 m elevation 3740 Pa

35 m x 70 m

Wind Power Spectral Analysis

Temporary and Permanent

Flag Pole Configuration

Top Truck Assembly:	5 m (16.4 f)
Pole Height:	185 m (607 ft)
Number Of Sections:	8
Top Diameter:	2060 mm (6.76 ft)
Bottom Diameter:	5700 mm (18,7 ft)
Total Mass	1400 t (3 860 000 Pounds)
Steel:	EN 10025-3 S460NL
Bolts:	10.9-HV-T2N EN 14399-4 up to M100

Flag Pole Configuration

Flag Pole Fabrication

Flanges with double row of bolting

7/3/2024

Flag Pole Fabrication

New Cairo flagpole during erection 202 m (663 ft)

New Cairo flagpole during erection 202 m (663 ft)

The pole is installed section by section.

It may take a few days between two sections because of the two rows of bolts to be installed with tensioning equipment.

During installation we still have to consider a very high wind velocity which may general vibration issue

Why dampers are requested ?

7/3/2024

This flagpole starts to vibrate once the flag was under replacement. The flag so far was acting as a Vortex breaker. Apparently second mode of vibration

Wind to be considered during instalation

For erection time of more than 3 days and less than 3 months, EN 1991-1-6 recommends a 5-year return wind speed (10-minute average).

Based on the wind study carried out by RWDI, the 1700-year return period 10-minute average wind speed for scenario F installation height is 57.5 m/s. The corresponding 50-year return is $57.5 \times 0.86 = 49.45$ m/s. The 5-year return period wind speed is $49.45 \times 0.85 = 42.03$ m/s.

 $1.25 V_m = 1.25 \times 42.033 = 52.54 \text{ m/s} (117.6 \text{ Mile/hr or } 189 \text{ km/hr})$. The calculated critical wind speed limit of 52.54 m/s is much higher than the previously specified 30 m/s

During construction we had to consider these extreme design wind speed

Finite Element Modeling of Baku Flagpole

Finite Element Model 65 different sections

1. Ring 570 X 556 (1)	🔇 35. Ring 385 X 375 (35)
🔇 🛯 2. Ring 570 X 556 (2)	🔞 🛯 36. Ring 379 X 369 (36)
🚫 📕 3. Ring 570 X 556 (3)	37. Ring 372 X 362 (37)
4. Ring 570 X 556 (4)	38. Ring 366 X 356 (38)
5. Ring 570 X 556 (5)	39 Ring 360 X 351 (39)
6. Ring 563 X 549 (6)	A Ding 252 V 244 (40)
Q 7. Ring 560 X 547 (7)	(1) HU. King 355 X 344 (40)
8. Ring 554 X 541 (8)	Q 41. Ring 34/ X 339 (41)
9. Ring 548 X 535 (9)	42. Ring 341 X 333 (42)
10. Ring 542 X 529 (10)	(3 43. Ring 334 X 326 (43)
Q 11. Ring 535 X 522 (11)	🔇 44. Ring 328 X 320 (44)
12. Ring 529 X 516 (12)	🔇 45. Ring 322 X 314 (45)
13. Ring 523 X 510 (13)	46. Ring 315 X 307 (46)
14. Ring 517 X 504 (14)	🐼 47. Ring 309 X 301 (47)
15. Ring 510 X 497 (15)	(3 48. Ring 302 X 294 (48)
16. Ring 504 X 491 (16)	(C) 49, Ring 296 X 290 (49)
O 17. Ring 498 X 485 (17)	(C) 50, Bing 290 X 284 (50)
18. Ring 497 X 492 (18)	51 Ping 283 V 277 (51)
() 19. Ring 485 X 472 (19)	(A) 51. King 205 X 277 (51)
20. Ring 479 X 466 (20)	52. Ring 277 X 271 (52)
21. Ring 4/3 X 460 (21)	53. Ring 2/1X 265 (53)
22. Ring 467 X 454 (22)	54. Ring 264 X 258 (54)
23. Ring 460 X 447 (23)	S5. Ring 264 X 258 (55)
24. Ring 454 X 441 (24)	🚱 📕 56. Ring 253 X 247 (56)
25. Ring 443 X 435 (25)	🚫 📕 57. Ring 245 X 239 (57)
20. King ++2 × +50 (20)	🚫 🛯 58. Ring 239 X 233 (58)
27. Ring 435 X 425 (27)	🖏 📕 59. Ring 232 X 226 (59)
20. Ring 423 X 411 (20)	60. Ring 226 X 221 (60)
B 30 Ping 416 X 405 (30)	61. Ring 219 X 214 (61)
31, Ring 410 X 399 (31)	62 62, Ring 212 X 207 (62)
32. Ring 404 X 393 (32)	(C) 63. Bing 207 X 202 (63)
33. Ring 397 X 386 (33)	B 64 Ring 206 X 201 (64)
34. Ring 391 X 380 (34)	A 65 Ding 200 X 201 (04)
	0.4 03. King 300 X 233 (03)

Frequency and Critical Wind Speeds

When the flagpole is fully installed the first frequencies are :

1st:0.221 Hz 2nd:0.723 Hz 3rd:1.692 Hz

The corresponding critical wind speed are :

```
1<sup>st</sup>:3.63 m/s (11.91 ft/s)
```

```
2<sup>nd</sup>:12.04 m/s (39.5 ft/s)and 15.21 m/s
```

(49.90 ft/s)

3rd:24.37 m/s (79.95 ft/s),23.59 m/s

(77.39 ft/s) and 37.94 m/s (124.48 ft/s)

Safe choice of the structural damping

EN 1991-1-4:2005 (E)

Eurocode for a mast/tower , fully welded and without any liner, recommend a log damping of 0.012 (damping=0.191%).

Due to our experience, having done damping measurement on fully welded structures, we recommend to be on the safe side to consider a smaller log damping δ =0.005 (damping 0.08 %) – 2.40 times smaller than the Code Recommendation

Structural type	structural damping δ_{i}					
reinforced concrete building	ngs		0,10			
steel buildings			0,05			
mixed structures concrete	0,08					
reinforced concrete tower	s and chimneys		0,03			
unlined welded steel stack	s without external thermal ins	ulation	0,012			
unlined welded steel stack	with external thermal insulation	on	0.029			
81 55 16 59 gray tes	<i>h/b</i> < 18					
steel stack with one I	iner with external thermal	20≤h/b<24	0,040			
insulation		h/b ≥ 26	0,014			
	<i>h/b</i> <18	0,020				
steel stack with two or thermal insulation a	more liners with external	20≤h/b<24	0,040			
		<i>h/b</i> ≥ 26	0,025			
steel stack with internal bi	ick liner		0,070			
steel stack with internal g	unite		0,030			
coupled stacks without lin	er		0,015			
guyed steel stack without	liner		0,04			
N 13 N 648	welded	0,02				
steel bridges + lattice steel towers	high resistance bolts	0,03				
	ordinary bolts	0,05				
composite bridges			0,04			
concrete bridges	prestressed without cracks		0,04			
concrete bridges	with cracks		0,10			
Timber bridges			0,06 - 0,12			
Bridges, aluminium alloys			0,02			
Bridges, glass or fibre reir	forced plastic		0,04 - 0,08			
cables	parallel cables		0,006			
Cables	0,020					
NOTE 1 The values for aerodynamic ef needed through	timber and plastic composite fects are found to be significant specialist advice (agreed if appro	s are indicativ in the design, priate with the c	e only. In cases wher more refinded figures ar ompetent Authority.			
NOTE 2 For cable support	ted bridges the values given in Ta	able F.2 need to	be factored by 0,75			

Table F.2 — Approximate values of logarithmic decrement of structural damping in the fundamental mode, δ_{e}

Vibration Amplitude prediction

Once the flagpole is fully installed, the second mode is the worst case with vibration amplitude of 1.08 m (3.54 ft) (first approach of Eurocode)

Most of the time on this type of extreme slender structures the second mode of vibration is prevailing

Log damping	0.005 0.08%	Eurocode 1 - method 1	
nermoue	critical wind speed =	3.69	m/s
		vortex shedding to be considered for the first mode	
	Scrution NumnerSc =	2.55	
	/Reynolds Number Re(V _{crit}) =	7.38E+05	
	lateral force coefficient C _{lat} =	0.20	
	Max displacment y _{F.max} =	0.556	m
	Ratio displacment/diameter = y _{F.max} / b =	0.185	
		too large displacment for any reliability class	
	Max fatige stress amplitude $\Delta \sigma$ =	58.3	Мра
	number of vibration cycles N =	8.51E+06	
	correlation lenght L _j =	21.070	m
Log damping 2nd mode	0.005 0.08% 0.723 Hz	Eurocode 1 - méthod 1	
critical wind speed V _{crit} =		12.04	m/s
		15.21	m/s
		vortex shedding to be considered for the second mode	
Nombre de Scruton Sc =		3.637	
Nombre de Revnolds Re	(V _{erit}) =	2.2/0 2.41F±06	
in the second seco	(* uit/	3.84E+06	
Coefficient de force latéra	ale C _{lat} =	0.20	
		0.20	
	déplacement maximal y _{E max} =	1.082	m
	γ _{F max} / b =	0.286	
	21 June -	too large displacement for all class of reliability	
	Amplitude de contraintes maximale Δσ =	368.0	Мра
	nombre de cycle N =	1.48E+08	
ngueur de corrélation L _j =		20.840	m
		13.699	m

Criterion for the design of temporary dampers

DESIGN CRITERIA FOR THE TEMPORARY DAMPERS

A temporary damper will be needed if:

- •The vibration amplitude >0.15 m
- •The tensile stress during vibration>60% of the shell yield stress

		N	linimun	n yield s MPa	strength a	Reh	Tensile strength Rm MPa		
Steel grade Nominal thickness mm								Nominal f m	thickness m
	≤16	>16 ≤40	>40 ≤63	>63 ≤80	>80 ≤100	>100 ≤150	>150 ≤200	≤100	>100 ≤200
S460NL	460	440	430	410	400	380	370	540720	530-710

We consider that the tensile strength is 540 Mpa.

The construction stage is supposed to occurred in a short period of time of less than one month. The maximum critical speed is calculated in Distributed Engineering Memo 21-EVC-001 EM-007 and it has a value of 52.54 m/s

7/3/2024

Frequencies Modes during construction

This graph represents the evolution of the frequency's mode during the various height of installation.

During erection stage, only the two first vibration mode may generate vibration

First Mode of Vibration

TABLE OF DAMPER TYPE WITH FILLING LEVELS		1	2	3	4	5	6
AT EACH STEP OF CONSTRUCTION	Erection Stage G	Erection Stage F	Erection Stage E	Erection Stage D	Erection Stage C	Erection Stage B	
		Top Elevation	Top Elevation				
		202.35 m	187.46 m	158.123 m	128.78 m	102.28 m	81.51 m
		seg 10 to 3	seg 10 to 4	seg 10 to 5	seg 10 to 6	seg 10 to 7	seg 10 to 8
FIRST M	IODE		-				
First Mode f1	Hz	0.257	0.293	0.390	0.584	1.047	1.925
Elevation	m	171.36	156.22	127.11	97.78	71.28	50.51
Diameter b=	b=	2.360	2.647	3.224	3.917	4.484	4.922
Critical Wind Speed-Vcr 1 m/s		3.37	4.31	6.99	12.71	26.09	53.38
Number of vibration cycles on 30	years	8.50E+06	1.55E+07	4.72E+07	1.24E+08	3.33E+07	5.80E+01
Number of critical cycle for 1 mon	nths	23,611	43,056	131,111	343,611	92,500	0
Max displacement	m	0.215	0.271	0.347	0.395	0.621	0.691
ratio =displ/b		0.091	0.102	0.108	0.101	0.138	0.140
max fatigue stress amplitude	Мра	32	47.1	93.5	199.5	647.5	1473.000
Max stress	Мра	16	23.55	46.75	99.75	323.75	647.5
ratio (stress/540 Mpa)		2.96%	4.36%	8.66%	18.47%	59.95%	119.91%
Modal Mass	kg	127,208	136,153	175,326	193,854	176,543	153,625
	kg (cross check with model)	114,000	130,000	165,000	187,000	153,625	Vc>52.54 m/s
		0.90	0.95	0.94	0.96		
Mini requested LOG Damping for 0.150 m displact		0.0072	0.0090	0.0116	0.0132	0.0207	
Mini LOG Damping to have stress	0.0002	0.0004	0.0007	0.0015	0.0050		
Mini requested log decrement da	mping	0.0072	0.0090	0.0116	0.0132	0.0207	
Min damping		0.114%	0.144%	0.184%	0.210%	0.329%	

The cases in the green cases must be considered because the corresponding critical wind speed is smaller that the max to be considered. Stage B, to be ignored because critical wind speed 53.38 m/s>52.54 m/s

7/3/2024

Second Mode of Vibration

	1	2	3	4	5	6
	Erection Stage G	Erection Stage F	Erection Stage E	Erection Stage D	Erection Stage C	Erection Stage B
	Top Elevation					
	202.35 m	187.46 m	158.123 m	128.78 m	102.28 m	81.51 m
	seg 10 to 3	seg 10 to 4	seg 10 to 5	seg 10 to 6	seg 10 to 7	seg 10 to 8
SECOND MODE		Zone 2 ignored				
Second Mode f2 Hz	0.922	1.114	1.733	3.063	5.828	11.150
Elevation first zone m	171.36	156.22	127.11	97.78	71.28	50.51
Diameter first zone b1= b1=	2.36	2.647	3.224	3.917	3.384	4.922
Number of vibration cycles on 30 years	1.90E+08	2.17E+08	3.32E+07	6	0	0.00E+00
Number of critical cycle for 1 month	527,778	602,500	92,222	0	0	0
Critical wind speed zone 1-Vrc 2,1 m/s	12.09	16.79	31.04	61.21	145.19	304.89
Elevation second zone m	88.84	77.4	59.46	47.25	35.07	23.75
Diameter second zone b2= m	4.106	4.358	4.734	4.984	5.234	5.483
Critical wind speed zone 1-Vrc 2,2 m/s	21.03	27.25	44.97	79.92	169.48	339.64
Max displacement m	0.262	0.316	0.429			
max fatigue stress amplitude Mpa	563.1	127.6	1638	both Vcr	both Vcr	both Vcr
Max stress Mpa	281.55	63.8	819	>52.4m/s	>52.4 m/s	>52.4 m/s
ratio (stress/540 Mpa)	52.1%	11.8%	151.7%	second mode	second mode	second mode
Modal Mass kg	127,208	136,153	175,326	ignored	ignored	ignored
Mini requested damper for 0.150 m displact	0.0087	0.0105	0.0143			
Mini requested displacment to have stress<60%	0.0043	0.0010	0.0126			
Mini requested log decrement damping	0.0087	0.0105	0.0143			
Min damping	0.139%	0.168%	0.228%			

Stages B to D are ignored with critical wind speed above 61 m/s (136 Miles/hr)

Dampers Configuration

To cover all theses cases, we have design 3 different adjustable dampers Type A and B are units 180° wide (1 or 2 unit per case, A can be mixed with B) Type C is a square based damper

TABLE OF REQUESTED DAMPERS	1	2	3	4	5	6
AT EACH STEP OF CONSTRCUTION	Erection Stage G	Erection Stage F	Erection Stage E	Erection Stage D	Erection Stage C	Erection Stage B
	Top Elevation					
	202.35 m	187.46 m	158.123 m	128.78 m	102.28 m	81.51 m
	seg 10 to 3	seg 10 to 4	seg 10 to 5	seg 10 to 6	seg 10 to 7	seg 10 to 8
UNIT TYPE A Quantity requested	1XA	1XA	2 X A	2XA		
UNIT TYPE B Quantity requested	1XB	1XB			2XB	
UNIT TYPE C Quantity requested			1 X C			

Damper type A: will be used 4 times for frequencies varying from 0.257 Hz to 0.584 Hz (first mode only)
Damper type B:will be used 3 times for frequencies varying from 0.922 Hz to 1.047 Hz (first and second mode)
Damper type C:will be used 1 time for 1.733 Hz (second mode)

Dampers Shape

Type A or B shape

We have 2 dampers A and 2 damper B Depending on the cases we can have

- A+A
- A+B
- B+B

Type C shape

7/3/2024

Dampers Installation during Construction

Dampers Installation during Construction

Dampers Installation during Construction

Conclusion

Flagpoles are very sensitive to vibration since the structural damping is extremely small. This small structural damping result from very strong flanges with pre tensioned bolts. This type of connection is so strong that the flagpole behave as a fully welded structure with no energy dissipation at the flanges.

During construction vibration can occur and consequently temporary and permanent dampers must be installed.

Thanks for your attention